Sunday, February 20, 2011
Cheap, clean ways to produce hydrogen for use in fuel cells? A dash of disorder yields a very efficient photocatalyst
Cheap, clean ways to produce hydrogen for use in fuel cells? A dash of disorder yields a very efficient photocatalyst ScienceDaily (Jan. 30, 2011) — A little disorder goes a long way, especially when it comes to harnessing the sun's energy. Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) jumbled the atomic structure of the surface layer of titanium dioxide nanocrystals, creating a catalyst that is both long lasting and more efficient than all other materials in using the sun's energy to extract hydrogen from water.
Hydrogen cartridges fuel laptops and phones for outdoor enthusiasts
Hydrogen cartridges fuel laptops and phones for outdoor enthusiasts ScienceDaily (Feb. 18, 2011) — How does a Michigan State University scientist fuel his enthusiasm for chemistry after 60 years? By discovering a new energy source, of course.
This week, SiGNa Chemistry Inc. unveiled its new hydrogen cartridges, which provide energy to fuel cells designed to recharge cell phones, laptops and GPS units. The green power source is geared toward outdoor enthusiasts as well as residents of the Third World, where electricity in homes is considered a luxury.
The spark for this groundbreaking technology came from the laboratory of James Dye, SiGNa's co-founder and University Distinguished Professor of Chemistry Emeritus at MSU. His work with alkali metals led to a green process to harness the power of sodium silicide, which is the source for SiGNa's new product.
This week, SiGNa Chemistry Inc. unveiled its new hydrogen cartridges, which provide energy to fuel cells designed to recharge cell phones, laptops and GPS units. The green power source is geared toward outdoor enthusiasts as well as residents of the Third World, where electricity in homes is considered a luxury.
The spark for this groundbreaking technology came from the laboratory of James Dye, SiGNa's co-founder and University Distinguished Professor of Chemistry Emeritus at MSU. His work with alkali metals led to a green process to harness the power of sodium silicide, which is the source for SiGNa's new product.
Subscribe to:
Posts (Atom)